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1 introduction
1.1 backgrounds

The Weil representation is a special representation of symplectic group. The finite field case is
defined as follows: let V be a symplectic vector space over the finite field k = Fq with odd characteristic,
and Heis(V ) be the Heisenberg group defined by the symplectic form:

1 → k → Heis(V ) → V → 1.

For a character ψ : → C×, we can define an irreducible representation HV,ψ of Heis(V ) with central
character ψ. It is a subspace of functions on the set V and its dimension is q 1

2 dimV . This can be
extend to a projective representation ωψ of Sp(V ), called the Weil representation. In general, it can
be descent to a representation of the double cover S̃p(V ) of the symplectic group. The case in local
field k((t)) is defined similarly using residue.

A dual pair (G,H) is the subgroup G × H → Sp(V ) such that they are the centralizer of
each other. Examples are (Sp(V1),O(V2)) where V = V1 ⊗ V2, and (GL(L1),GL(L2)) where V =
Hom(L1, L2)⊕ Hom(L2, L1). By restricting Weil representation to this subgroup, we obtain WeilG,H
as a representation of G×H. Associated to it, we can define theta functions and construct theta lifts
by using it as an integral kernel.
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1.2 geometrization
By choosing a Lagrangian L ⊂ V , the Weil representation can be identified with L2-functions on

L or V/L. Thus it has a natural categorification D(L). In [14], the action of D(Sp(V )) is constructed
via the functor

D(Sp(V )) → End(D(L)) ' D(L× L) ' D(V )

giving by a sheaf in D(Sp(V )× V ).
In the local field case, one geometric model of Weil representation is constructed in [19], but the

action of Hecke categories is not written down explicitly in [19]. While in [21], the action of SatG and
SatH are given separately by choosing two Lagrangians and using their Schrödinger models.

When studying Weil representations, we would expect more compatibilities such as the commuta-
tivity of these two actions. By mimicking the lattice model of the Weil representation, I could define
the derived Weil category with the action of Hecke categories of G×H at the same time.

Theorem 1. Let F be a local field and O its ring of integers. For a variety X, let XO be its arc space
and XF be its loop space.

Let WeilG,H be the category of GO×HO-equivariant (VO, ψ)-equivariant sheaves on VF . Let SatG =
DGO (GF /GO) be the derived Satake category. Then we have the action of SatG×H ' SatG ⊗ SatH on
WeilG,H . Hence the actions of SatG and SatH commute in the strongest sense.

In section 2, we will define the unramified part of the Weil representation in the derived category
setting. Let WeilG,H be the category of GO ×HO-equivariant Weil representation.

In [21], Lysenko constructed the functor

PervGO (GrG) ' Rep(G∨) → (Weil♡G,H)ss,

and showed that this is an equivalence in the case of (GLn,GLm)-case and conjectured it is also true
in the (Sp2m, SO2n)-cases. We will show this conjecture is true in section 3.

Theorem 2. All the irreducible objects in Weil♡G,H are given by W ∗G δV for W ∈ Irr(G∨).

2 definition of the categories
2.1 notations

Let k be an algebraically closed field used in the definition of geometric object. Let Λ = Qℓ or
C be the field of the coefficient of sheaves. ψ : k → Λ× is a non-trivial character. Then we get the
Artin-Schreier sheaf Lψ ∈ D(A1). In the case k = Λ = C, this is the exponential D-module.

F = k((t)) is the field of Laurent series, and O = k[[t]] is the ring of integers in F . ψ naturally
extends to a character of F via residue: ψ : F

res−−→ k
ψ−→ Λ×.

When V is a symplectic vector space, use ω : V × V → k to denote the symplectic pairing. It
naturally extends to a symplectic pairing on VF :

VF × VF → F
res−−→ k,

which also gives a pairing on t−rVO/t
rVO. By abuse of notation, we still use ω to denote them.

For an algebraic group G, define GrG = GF /GO be the affine Grassmannian of G and define
SatG = DGO (GrG) be the derived Satake category.

If needed, all categories are assumed to be (∞, 1)-categories. By saying derived category, we mean
stable (∞, 1)-categories. For a derived category C with certain t-structure, we use C♡ to denote the
heart of this t-structure.
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2.2 Schrödinger model
In the general linear group case, the vector space V has a polarization V = T ∗L such that L =

Hom(V1, V2) is a representation of G×H. In this case, the Weil representation can be identified with
GO × HO-equivariant sheaves on LF . More concretely, it is defined as a colimit of categories of the
diagram:

· · · → DG2r×H2r
(t−rLO/t

rLO) → DG2r+2×H2r+2
(t−r−1LO/t

r+1LO) → · · · .

The arrows are given by i∗p† = i∗p
∗[dimL], where p : t−rLO/t

r+1LO → t−rLO/t
rLO is the projection

and i : t−rLO/t
r+1LO → t−r−1LO/t

r+1LO is the inclusion. The degree is chosen such that the middle
perverse t-structure is preserved.

2.3 lattice model
When the case V is possibly not canonically split, the above construction lacks the equivariance

structure. We propose another approach through the so-called lattice model. We first explain our
construction through the finite case.

2.3.1 finite case

Pick any Lagrangian L ⊂ V , we can think of L as a group acting on V via addition. Then we
have a relative character on L: L × V

ψ◦ω−−−→ Λ× and corresponding sheaf ω∗Lψ. Call a sheaf F is
(L,ψ)-equivariant if we have an isomorphism

act∗ F ∼= proj∗ F ⊗ ω∗Lψ.

Hence we can form the category D(V/(L,ψ)) of (L,ψ)-equivariant sheaves on V .

2.3.2 local case

Consider the GO ×HO-stable Lagrangian VO ⊂ VF . To mimic the finite case, we want a category
D(VF /(VO, ψ)). As the colimit of finite cases, we define this category as the colimit of the following
diagram:

· · · → D((t−rVO/t
rVO)/(VO/t

rVO, ψ))
i∗p

†

−−−→ D((t−r−1VO/t
r+1VO)/(VO/t

r+1VO, ψ)) → · · · .

Even Gr can act on the space t−rVO/VO, it cannot act on (VO/t
rVO, ψ)-equivariant sheaves on

t−rVO/t
rVO. Rather, we only have the action of G2r. Hence the unramified Weil representation

DGO×HO (VF /(VO, ψ)) is the colimit of the following diagram:

· · · → DG2r×H2r ((t
−rVO/t

rVO)/(VO/t
rVO, ψ)) →

→ DG2r+2×H2r+2
((t−r−1VO/t

r+1VO)/(VO/t
r+1VO, ψ)) → · · · .

We will define the Hecke action in the next section.

2.4 Fourier transform
While the lattice model is defined without the assumption of V having a polarization, we want to

show this construction is equivalent to the Schrödinger model in polarizable case.
By the colimit description of the category, it suffices to show D(t−rLO/t

rLO) is equivalent to
D((t−rVO/t

rVO)/(VO/t
rVO, ψ)). By taking Fourier transform, we know the latter is equivalent to

D((t−rVO/t
rVO)/(t

−rLO/t
rLO, ψ)). Hence it suffices to show the following statement:
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Proposition 1. If choose a particular splitting of the short exact sequence 0 → L → V → V/L → 0,
we get a non-canonical equivalence of categories

D(V/(L,ψ)) ∼= D(V/L).

If the splitting preserves G-action, we have DG(V/(L,ψ)) ∼= DG(V/L).

Proof. Consider the space L×V/L. It carries an L-action by L×L×V/L→ L×V/L by (l1, l2, v+L) 7→
(l1 + l2, v + L). From the map L × L × V/L → A1, (l1, l2, v + L) 7→ ω(l1, v), we can define (L,ψ)-
equivariant sheaves on L× V/L.

Then we have the canonical equivalence D(V/L) ' D((L × V/L)/L) ' D((L × V/L)/(L,ψ)),
where the second is given by F 7→ F ⊗Lψ. This comes from Lψ is (L,ψ)-equivariant, as ω(l1+ l2, v) =
ω(l1, v) + ω(l2, v).

For a given section V/L→ V , we get a non-canonical isomorphism V ∼= L×V/L. This isomorphism
makes the following diagram commutes:

A1 L× V V

A1 L× L× V/L L× V/L

act

proj
∼= ∼=

act

proj

This gives the equivalence D(V/(L,ψ)) ∼= D((L× V/L)/(L,ψ)).
If the G-action preserves the isomorphism V ∼= L × V/L, the above equivalences preserves G-

actions.

3 irreducible objects
3.1 singular support

Here we compute T ∗(V/(L,ψ)). The character ω induces a map A1 × V → Lie(L)∗ ' L∗ given by
V

ω−→ V ∗ → L∗. The moment map of L-action T ∗V → L∗ is given by (v, v∗) 7→ (l 7→ 〈l, v∗〉). Its fiber
at 1 ∈ A1 is

T ∗V ×L∗×V (1× V ) = {(v, v∗) : ω(v)|L = v∗|L} = {(v, v∗) : v − ω−1(v∗) ∈ L}.

Here the last equation uses the fact that L is a Lagrangian, i.e.,

0 → L→ V ' V ∗ → L∗ → 0

is an exact sequence. Hence we have

T ∗(V/(L,ψ)) = (T ∗V ×L∗×V (1× V ))/L ' V.

Similarly, we should expect T ∗(VF /(VO, ψ)) ' VF . In fact, we see the singular support of sheaves in
D(VF /(VO, ψ)) lies in the colimit of the sets

· · · → {L ⊂ t−rVO/t
rVO is Lagrangian} p∗i∗−−−→ {L ⊂ t−r−1VO/t

r+1VO is Lagrangian} → · · · ,

which is Lagrangians in VF that contains some tNVO.
Then we consider the behavior of GO-action on sheaves to its singular support.

Proposition 2. The moment map of the GO-action is given by VF → g∗O, v 7→ (g 7→ ω(v, gv)).
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Proof. First, for the finite case, if a groupG acts on the symplectic space (V, ω) and fixes the Lagrangian
L, we show the moment map of G-action on V/(L,ψ) is by V → g∗, v 7→ (g 7→ ω(v, gv)).

The moment map of G-action on V is by T ∗V → g, (v, v∗) 7→ (gv, v∗). It restricts to a map from
T ∗V ×L∗×V (1× V ). The isomorphism T ∗V ×L∗×V (1× V ) ' V is given by (v, v∗) 7→ 1

2 (v + ω−1(v∗))
or v 7→ {(v+ l, ω(v− l))}/L. Hence the image of V under the moment map is g 7→ ω(g(v+ l), v− l) =
ω(gv, v).

Then, for the local case, we have moment maps t−rVO/trVO → g∗2r, v 7→ (g 7→ ω(v, gv)). It is clear
they are compatible for different r. By taking colimit, we get the desired moment map VF → g∗O.

3.2 relevant orbits
If a (VO, ψ)-equivariant sheaf on VF is GO-equivariant, its singular support must be contained in

the preimage of 0 ∈ g∗O.
Any section VF /VO → VF induces a non-canonical equivalence D(VF /(VO, ψ)) with D(VF /VO),

which does not preserve GO-action. However, by singular support calculation, we can still de-
termine when a GO-orbit on VF /VO that could occur as the support of an irreducible object in
DGO (VF /(VO, ψ)).

Proposition 3. Let V = Hom(Cn,Cm) and n ≤ m. Consider the subset

{(v, v∗) : v∗v ∈ gln(O), vv∗ ∈ glm(O)} ⊂ V (F )× V ∗(F )

and its image in V (F )/V (O)×V ∗(F )/V ∗(O). Under suitable GLn(O)×GLm(O)-action, any element
in the quotient can be conjugate to((

diag(t−a1 , . . . , t−ar ) 0
0 0

)
,

(
0 0
0 diag(t−b1 , . . . , t−bs)

))
(1)

for r + s ≤ n, a1 ≥ · · · ≥ ar ≥ 1, bs ≥ · · · ≥ b1 ≥ 1.

Proof. By row and column operators on an elements in V (F ), one can make it diagonal, i.e, of the
form (

diag(t−a1 , . . . , t−an)
0

)
for a1 ≥ · · · ≥ an. Let r = max{i : ar > 0}.

Write v∗ = (xij)1≤i≤n,1≤j≤m. The condition v∗v ∈ glm(O) and vv∗ ∈ gln(O) is equivalent to
xij ∈ tmax{ai,aj}O. Hence v∗ is of the form(

Ar,r Ar,m−r
An−r,r An−r,m−r

)
where Ai,j ∈ Mati,j(F ) and Ar,r, Ar,m−r, An−r,r has coefficients in tO.

Next, use GLn−r(O) × GLm−r(O) to do row and column operators to make An−r,m−r diagonal.

Thus we get v∗ + V ∗(O) is conjugate to
(
0 0
0 diag(t−b1 , . . . , t−bs)

)
+ V ∗(O).

Since v ∈
(
diag(t−a1 , . . . , t−ar ) 0

0 0

)
+V (O) and matrices

(
1

GLn−r

)
and

(
1

GLm−r

)
fix this

set, we know v + V (O) is conjugate to
(
diag(t−a1 , . . . , t−ar ) 0

0 0

)
+ V (O).

Corollary 1. Let n ≤ m. The irreducible elements in DGLnO×GLmO ((T
∗V )F /(T

∗V )O) is indexed by
X•(GLn).
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Proof. Just note that the element in (1) corresponds to (a1, . . . , ar, 0 . . . , 0,−b1, . . . ,−bs) in X•(GLn).

Proposition 4. Let V = Hom(C2n,C2m) and n ≤ m. C2n = Cn ⊕ (Cn)∗ is equipped with standard
symmetric inner product and C2m = Cm ⊕ (Cm)∗ is equipped with standard anti-symmetric inner
product. Consider the subset

{v ∈ V (F ) : v∗v ∈ so2n(O), vv∗ ∈ sp2m(O)}

and its image in V (F )/V (O). Under suitable O2n(O)× Sp2m-action, any element in the quotient can
be conjugate to diag(t−a1 , . . . , t−ar ) 0 0

0 0 0
0 0 diag(t−b1 , . . . , t−bs)


for r + s ≤ n, a1 ≥ · · · ≥ ar ≥ 1, bs ≥ · · · ≥ b1 ≥ 1.

Proof. Write

v = (v1, v2, v3, v4) ∈ Hom(Fn, Fm)⊕Hom(Fn, (Fm)∗)⊕Hom((Fn)∗, Fm)⊕Hom((Fn)∗, (Fm)∗),

and

v∗ = (−vt4,−vt2, vt3, vt1) ∈ Hom(Fm, Fn)⊕Hom(Fm, (Fn)∗)⊕Hom((Fm)∗, Fn)⊕Hom((Fm)∗, (Fn)∗).

Then the condition of vv∗ ∈ sp2m(O) is equivalent to v1vt4 + v3v
t
2, v1v

t
3 + v3v

t
1, v2v

t
4 + v4v

t
2 ∈ glm(O).

The condition of v∗v ∈ so2n(O) is equivalent to vt3v2 − vt4v1, v
t
3v4 − vt4v3, v

t
1v2 − vt2v1 ∈ gln(O).

Use elements in GLn(O),GLm(O) and permutations (Z/2Z)n ⋉Sn, (Z/2Z)m ⋉Sm, we can make
v1 diagonal and vt((v1)jj) ≤ vt((v2)ij), vt((v1)ii) ≤ vt((v3)ij).

In particular, write v1 =

(
diag(t−a1 , . . . , t−an)

0

)
for a1 ≥ · · · ≥ an. Let r = max{i : ar > 0}. Write

v2 as follows  t−a1x11 · · · t−anx1n
...

...
t−a1xm1 · · · t−anxmn

 ,

where xij ∈ O. Then the condition vt1v2 − vt2v1 ∈ gln(O) gives xij − xji ∈ tai+ajO, 1 ≤ i, j ≤ n.
Take yij = yji = xji for i ≤ r, i ≤ j and yij = 0 for i, j > r. This gives an element Y in

Sym2 Om ⊂ Sp2m(O). Take the action, we get x′ij = xij − xji and x′ji = 0 for i ≤ r, i ≤ j. Thus
(v′2)ij = t−aj (xij − xji) ∈ taiO ⊂ O and (v′2)ji = 0 for i ≤ r, i ≤ j. When i, j > r, we have
(v′2)ij = (v2)ij = t−ajxij ∈ t−ajO ⊂ O. In conclusion, we have v′2 ∈ Hom(On, (Om)∗).

Similarly, write

v3 =



t−a1x11 · · · t−a1x1m
...

...
t−anxn1 · · · t−anxnn
xn+1,1 · · · xn+1,n

...
...

xm1 · · · xmn


,

where xij ∈ O for 1 ≤ i, j ≤ n. The condition v1v
t
3 + v3v

t
1 ∈ glm(O) gives xij + xji ∈ tai+ajO for

1 ≤ i, j ≤ n and xij ∈ tajO for i > n.
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If an ≤ 0, from our construction of v1, we know xij ∈ O for i > n. Otherwise, we have a1 ≥ · · · ≥
an ≥ 1, then xij ∈ tajO ⊂ O for i > n. Anyway, we have xij ∈ O for i > n.

For the remaining, use exactly the same method as before to use an element in Λ2On ⊂ SO2n(O)
to make v3 ∈ Hom((On)∗,Om).

Now v3v
t
2 ∈ glm(O), vt3v2 ∈ gln(O), we get v1vt4 ∈ glm(O), vt4v1 ∈ gln(O). Use the result in

Proposition 3, we can make v4 into a diagonal matrix.

Corollary 2. Let n ≤ m. The irreducible elements in DO2n×Sp2m
(VF /(VO, ψ)) is indexed by X•(O2n).

Proof. As r+ s ≤ n, we can further use permutations in Weyl group to make v+V (O) is conjugate to(
diag(t−a1 , . . . , t−ar ) 0

0 0

)
+ V (O) for r ≤ n. Thus it corresponds to (a1, . . . , ar, 0 . . . , 0) ∈ X•(O2n).

4 Hecke actions on lattice model
For a group homomorphism G → S̃p(V ), we want to define the action of D(G) on D(V/(L,ψ)),

we need a kernel sheaf on G × V . This is done in [15] and also [19]. Let L̃(V ) be the space of all
Lagrangians on V , [19] constructed a sheaf FL̃(V ) on L̃(V )× L̃(V )× V with properties. By the map
G → L̃(V ) × L̃(V ) given by g 7→ (gL, L), we obtain a sheaf FG on G × V . Thus we can define the
action by

S ∗ F = act!(pr
∗
2 FG ⊗ pr∗23 S ⊗ pr∗13 F ⊗ Lψ),

Here act : G×V ×V → V is given by (g, v1, v2) 7→ gv1+v2; pr are corresponding projections; Lψ is the
sheaf on G×V ×V given by the pullback of Artin-Schreier sheaf through G×V ×V → A1, (g, v1, v2) 7→
ω(gv1, v2).

The properties of FL̃(V ) ensures this action gives a genuine module structure.
For the unit, take S = δ1 ∈ D(G). From the property ∆∗FL̃(V ) = F∆, we know FG|1 = ΛL and

thus the convolution product with an (L,ψ)-equivariant sheaf is just identity.

Proposition 5. The associativity holds. I.e., we have S1 ∗ (S2 ∗ F) ' (S1 ∗ S2) ∗ F .

Proof. For clarity, we use (g1, g2v1+ v2, v3) to denote the map G×G×V ×V ×V → G×V ×V given
by (g1, g2, v1, v2, v3) 7→ (g1, g2v1 + v2, v3) and similarly for other maps. Then we have

S1 ∗ (S2 ∗ F) =(g1(g2v1 + v2) + v3)!((g1, g2, v1)
∗(S1 ⊠ S2 ⊠ F)⊗

⊗ (g2, v2)
∗FG ⊗ (g1, v3)

∗FG ⊗ ω(g2v1, v2)
∗Lψ ⊗ ω(g1(g2v1 + v2), v3)

∗Lψ).

From the convolution property of FL̃(V ), we have the following isomorphism in L̃(V ) × L̃(V ) ×
L̃(V )× V :

add!(pr
∗
15 FL̃(V ) ⊗ pr∗34 FL̃(V ) ⊗ Lψ) ' pr∗2 FL̃(V ).

Take the pullback by the map G×G→ L̃(V )× L̃(V )× L̃(V ), (g1, g2) 7→ (g1g2L, g1L,L), we see

add!((g1, v1)
∗FG ⊗ (g2, g

−1
1 v2)

∗FG ⊗ Lψ) ' mult∗ FG.

Here, we used the fact that FL̃(V ) is G-equivariant. By change of variables, we see

(g1, g2, v1 + g1v2)!((g1, v1)
∗FG ⊗ (g2, v2)

∗FG ⊗ ω(v1, g1v2)
∗Lψ) ' mult∗ FG.

7



Hence we can simplify, by letting u = g1v2 + v3,

S1 ∗ (S2 ∗ F) =(g1g2v1 + g1v2 + v3)!((g1, g2, v1)
∗(S1 ⊠ S2 ⊠ F)⊗

⊗ (g2, v2)
∗FG ⊗ (g1, v3)

∗FG ⊗ ω(g1g2v1, g1v2 + v3)
∗Lψ ⊗ ω(g1v2, v3)

∗Lψ)
=(g1g2v1 + u)!((g1, g2, v1)

∗(S1 ⊠ S2 ⊠ F)⊗ (g1g2, u)
∗FG ⊗ ω(g1g2v1, u)

∗Lψ)
=(gv1 + u)!((g, v1)

∗((S1 ∗ S2)⊠ F)⊗ (g, u)∗FG ⊗ ω(gv1, u)
∗Lψ).

The right hand side is exactly (S1 ∗ S2) ∗ F .

The image of an (L,ψ)-equivariant sheaf is still an (L,ψ)-equivariant sheaf comes from the actlr-
equivariant property of FL̃(V ).

If a subgroup H ⊂ G fixes (L,ψ), we get the map G/H → L̃(V ) × L̃(V ), using it, we can define
the action of D(H\G/H) on DH(V/(L,ψ)) similarly:

S ∗ F = act!(pr
∗
2 FG ⊗ pr∗3(S⊠̃F)⊗ Lψ),

Here act : H\((G×H V )×V ) → H\V is given by (g, v1, v2) 7→ gv1 + v2. Since H fixes L, FG descends
to a sheaf FG/H on G/H×V . The actG-equivariant property of FL̃(V ) ensures FG/H is H-equivariant
under the action of h · (gH, v) = (hgH, hv). In conclusion, the action S ∗ F is well-defined. The proof
of properties such as associativity is identical as above.

The compatibility of FL̃(V ) under taking a subquotient W⊥/W of a Lagrangian W ⊂ V ensures
the actions of SatG2r on DG2r ((t

−rVO/t
rVO)/(VO/t

rVO, ψ)) are compatible. In conclusion, we have
the action of SatG on DGO (VF /(VO, ψ)).

For our case, G × H → Sp(V ) has a lift to S̃p(V ), we obtain a DGO×HO (GrG×H)-action on
DGO×HO (VF /(VO, ψ)).
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